Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(12): 5666-5677, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953507

RESUMO

A polysaccharide gel containing covalently bound amikacin, a broad-spectrum antibiotic, was produced by using epichlorohydrin-activated hydroxyethyl starch (HES). The structure of the polymers was analyzed by 13C and 1H nuclear magnetic resonance (13C NMR and 1H NMR) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The sites of covalent attachment of amikacin to the epoxypropyl substituent and the HES backbone were determined. The antibacterial activity of the polymer was evaluated in vitro using the agar well diffusion method with the Staphylococcus aureus P209 strain. It was demonstrated that the polymer retained activity in the presence of bacterial amylase, which is released upon bacterial attack. The gel was applied for coating pores and surfaces of a biocomposite material based on a xenogenic bovine bone matrix. In vivo experiments showed the effectiveness of utilizing amikacin-containing biocomposite bone-substitute materials in the treatment of experimental osteomyelitis in rats using objective histological control and X-ray tomography.


Assuntos
Amicacina , Matriz Óssea , Ratos , Animais , Bovinos , Amicacina/farmacologia , Staphylococcus aureus , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Amido/farmacologia , Polímeros/química
2.
ACS Appl Bio Mater ; 5(7): 3338-3348, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35791763

RESUMO

Microbubbles are routinely used ultrasound contrast agents in the clinic. While a soft protein shell is commercially preferable for imaging purposes, a rigid polymer shell demonstrates prolonged agent stability. Hence, combining polymers and proteins in one shell composition can advance microbubble properties. We formulated the hybrid "protein-copolymer" microbubble shell with a complex of bovine serum albumin and an amphiphilic copolymer of N-vinyl-2-pyrrolidone and acrylic acid. The resulting microbubbles demonstrated advanced physicochemical and acoustic properties, preserving in vitro biocompatibility. Adjusting the mass ratio between protein and copolymer allowed fine tuning of the microbubble properties of concentration (by two orders, up to 1010 MBs/mL), mean size (from 0.8 to 5 µm), and shell thickness (from 28 to 50 nm). In addition, the minimum air-liquid surface tension for the "protein-copolymer" solution enabled the highest bubble concentration. At the same time, a higher copolymer amount in the bubble shell increased the bubble size and tuned duration and intensity of the contrast during an ultrasound procedure. Demonstrated results exemplify the potential of the hybrid "protein-polymer" microbubble shell, allowing tailoring of microbubble properties for image-guided applications, combining advances of each material involved in the formulation.


Assuntos
Meios de Contraste , Microbolhas , Acrilatos , Resinas Acrílicas , Meios de Contraste/química , Polímeros/química , Povidona/análogos & derivados , Soroalbumina Bovina
3.
Polymers (Basel) ; 14(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35566896

RESUMO

Co-delivery of chemotherapeutics in cancer treatment has been proven essential for overcoming multidrug resistance and improving the outcome of therapy. We report the synthesis of amphiphilic copolymers of N-vinyl-2-pyrrolidone and allyl glycidyl ether of various compositions and demonstrate that they can form nanoaggregates capable of simultaneous covalent immobilization of doxorubicin by the epoxy groups in the shell and hydrophobic-driven incorporation of paclitaxel into the core of nanoparticles. The structure of the obtained copolymers was characterized by 13C NMR, IR, and MALDI spectroscopy, as well as adsorption at the water/toluene interface. A linear increase in the number-average molecular weight of amphiphilic copolymers and a decrease in the number-average diameter of macromolecular aggregates with an increase in the ratio N-vinyl-2-pyrrolidone/allyl glycidyl ether were observed. The assembled nanocarriers were characterized by DLS. The reported novel nanocarriers can be of interest for delivery and co-delivery of a wide range of pharmacological preparations and combined therapy for cancer and other deceases.

4.
Gels ; 8(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35200517

RESUMO

The aim of the study is to search for a reaction that provides the possibility of tandem "one-pot" formation of polymer networks during radical copolymerization of N-vinyl-2-pyrrolidone and glycidyl methacrylate. It was shown that the addition of recently synthesized 1,3-dimethylimidazolium (phosphonooxy-)oligosulfanide makes it possible to obtain a cross-linked copolymer in one stage as a result of radical copolymerization of N-vinyl-2-pyrrolidone and glycidyl methacrylate with a molar ratio of monomers less than 1.4. The structure of the copolymerization products of N-vinyl-2-pyrroldione and glycidyl methacrylate formed in the presence of 1,3-dimethylimidazolium (phosphonooxy-)oligosulfanide was characterized by 1H NMR, FTIR and MALDI spectroscopy. 1H NMR spectroscopy revealed an interaction under moderate heating between glycidyl methacrylate and 1,3-dimethylimidazolium (phosphonooxy-)oligosulfanide, accompanied by the formation of a mixture of unsaturated products of complex structure, presumably acting as crosslinking agents. It is shown that when the molar ratio of N-vinyl-2-pyrroldione/glycidyl methacrylate comonomers is 0.89, a densely crosslinked copolymer is formed, capable of limited swelling in water with a velocity constant of 5.06 × 10-2 min-1 and an equilibrium degree of swelling of about 227%.

5.
Polymers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34833338

RESUMO

Global enhancement of crop yield is achieved using chemical fertilizers; however, agro-economy is affected due to poor nutrient uptake efficacy (NUE), which also causes environmental pollution. Encapsulating urea granules with hydrophobic material can be one solution. Additionally, the inverse vulcanized copolymer obtained from vegetable oils are a new class of green sulfur-enriched polymer with good biodegradation and better sulfur oxidation potential, but they possess unreacted sulfur, which leads to void generations. In this study, inverse vulcanization reaction conditions to minimize the amount of unreacted sulfur through response surface methodology (RSM) is optimized. The copolymer obtained was then characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). FTIR confirmed the formation of the copolymer, TGA demonstrated that copolymer is thermally stable up to 200 °C temperature, and DSC revealed the sulfur conversion of 82.2% (predicted conversion of 82.37%), which shows the goodness of the model developed to predict the sulfur conversion. To further maximize the sulfur conversion, 5 wt% diisopropenyl benzene (DIB) as a crosslinker is added during synthesis to produce terpolymer. The urea granule is then coated using terpolymer, and the nutrient release longevity of the coated urea is tested in distilled water, which revealed that only 65% of its total nutrient is released after 40 days of incubation. The soil burial of the terpolymer demonstrated its biodegradability, as 26% weight loss happens in 52 days of incubation. Thus, inverse vulcanized terpolymer as a coating material for urea demonstrated far better nutrient release longevity compared with other biopolymers with improved biodegradation; moreover, these copolymers also have potential to improve sulfur oxidation.

6.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209367

RESUMO

The kinetic regularities of the initial stage of chemical oxidative polymerization of methylene blue under the action of ammonium peroxodisulfate in an aqueous medium have been established by the method of potentiometry. It was shown that the methylene blue polymerization mechanism includes the stages of chain initiation and growth. It was found that the rate of the initial stage of the reaction obeys the kinetic equation of the first order with the activation energy 49 kJ × mol-1. Based on the proposed mechanism of oxidative polymerization of methylene blue and the data of MALDI, EPR, and IR spectroscopy methods, the structure of the polymethylene blue chain is proposed. It has been shown that polymethylene blue has a metallic luster, and its electrical conductivity is probably the result of conjugation over extended chain sections and the formation of charge transfer complexes. It was found that polymethylene blue is resistant to heating up to a temperature of 440 K and then enters into exothermic transformations without significant weight loss. When the temperature rises above 480 K, polymethylene blue is subject to endothermic degradation and retains 75% of its mass up to 1000 K.

7.
Polymers (Basel) ; 13(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070935

RESUMO

The new initiator of the polymerization of acrylamide, leading to the formation of crosslinked polyacrylamide, was discovered. The structure of the synthesized polyacrylamide was characterized by XRD, 1Н NMR, and 13С NMR spectroscopy. It was shown that 1,3-dimethylimidazolium (phosphonooxy-)oligosulphanide is able to initiate radical polymerization under drying aqueous solutions of acrylamide, even at room temperature. According to XRF data, the synthesized polyacrylamide gel contains 0.28 wt% of sulphur. The formed polymer network has a low crosslinking density and a high equilibrium degree of swelling. The swelling rate of polyacrylamide gel in water corresponds to the first order kinetic equation with the rate constant 6.2 × 10-2 min-1. The initiator is promising for combining acrylamide polymerization with the processes of gel molding and drying.

8.
RSC Adv ; 11(15): 9008-9020, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423353

RESUMO

The synthesis of polymers using elemental sulphur as a chemical agent has been studied in relation to the worldwide overproduction of cyclo-octasulphur. Herein, the mechanisms of the processes leading to the inclusion of elemental sulphur into macromolecules have been reviewed and the main methods for reduction of the reaction temperature required for the S8 ring opening have been shown. Approaches to the activation of cyclo-octasulphur in the synthesis and macromolecule cross-linking reactions were discussed in the context of finding the chemical agents and conditions that satisfy the principles of green chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...